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Abstract 23 

We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and 24 

time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured 25 

point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at time 26 

scales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial 27 

representativeness is evaluated on a per time-scale basis by comparison to large-spatial scale datasets 28 

(the in situ spatial average, SMOS, AMSR2 and ECMWF). Four methods are used for this: temporal 29 

stability analysis (TStab), triple collocation (TC), the percentage of correlated areas (CArea) and a new 30 

proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial 31 

representativeness values tends to increase with the time scale but so does their dispersion. Locations 32 

exhibit poor spatial representativeness at scales below 4 days, while either very good or poor 33 

representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly 34 

series due to their multiple zero-crossings and TC is suitable for week and month scales but not for other 35 

scales where datasets cross-correlations are found low. In contrast, WCor and CArea give consistent 36 

results at all time-scales. WCor is less sensitive to the spatial sampling density, so it is a robust method 37 

that can be applied to sparse networks (1 station per footprint). These results are promising to improve 38 

the validation and downscaling of satellite SM series and the optimization of SM networks. 39 

1 Introduction 40 

Soil moisture (SM) plays an important role in atmospheric, hydrologic and ecological processes 41 

[Rodriguez-Iturbe, 2000; Daly and Porporato, 2005; Legates et al., 2011]. By means of them, it  42 

participates at various scales, from the largest climatic and meteorological scales [Douville, 2004; 43 
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Drusch, 2007] to the medium hydrological scale [Chen et al., 2011; Draper et al., 2012] and the 44 

smallest field and local scales [Vereecken et al., 2014]. 45 

The spatial scale of a set of spatially distributed SM measurements (or observations) refers to a triplet of 46 

entities: the extent (the area enclosing all the measurements), the spacing (the distance between 47 

measurements) and the support (the area actually sensed by the sensor) [Blöschl and Sivapalan, 1995]. 48 

A typical in situ station has a support of just some few centimeters (point or local support). In practice, it 49 

represents larger areas because the factors driving SM variability (vegetation, soil texture, topography, 50 

rainfall) are spatially connected. This effective support or spatial representativeness area is defined by 51 

the surrounding area showing sufficient similarity with the station location in terms of SM, according to 52 

a given evaluation methodology. Hereafter, we will use simply representativeness to refer to spatial 53 

representativeness. From space, passive microwave sensors provide SM estimates at a global extent 54 

with a resolution (support) of several tens of km, which is defined by the antenna footprint as the area 55 

containing half of the total signal power. C- and X-band sensors like AMSR-E, AMSR2 and WindSat 56 

[Wagner et al., 2007; Mladenova et al., 2011; Parinussa et al., 2012] and L-band sensors like SMOS 57 

and SMAP [Al Bitar et al., 2012; Kerr et al., 2016; Colliander et al., 2017] have shown good skills in 58 

capturing the temporal patterns of top-surface SM at ~1 cm and ~5 cm depth, respectively.  59 

Factors driving SM variability (vegetation, soil texture, topography, rainfall), although spatially 60 

dependent, are not homogeneous within satellite footprints. As a consequence, ground stations rarely 61 

represent satellite footprints perfectly. This spatial scale mismatch is by principle not known and 62 

difficult to estimate. Validation of satellite products usually consists in their direct comparison with in 63 

situ time series through linear metrics (correlation, bias, RMSE). Since the spatial scale mismatch is not 64 

considered, the statistics can be hampered to a great extent [Loew and Schlenz, 2011; Crow et al., 2012]. 65 
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The satellite-in situ spatial scale mismatch can be reduced with upscaling approaches that increase the 66 

effective in situ support. They can be applied if multiple in situ stations are available within the footprint 67 

(dense networks). The simplest techniques consist of linear and weighted spatial averages of the stations 68 

time series [Jackson et al., 2010]. Stations locations can also be selected in a spatial configuration that 69 

ensures the representativeness of the average, based on prior knowledge on, for example, soil texture 70 

and land cover [Bircher et al., 2012].  Downscaling of satellite observations can potentially help 71 

reducing the spatial scale mismatch for satellite validation [Malbéteau et al., 2016]. The principal 72 

drawback of most upscaling and downscaling approaches is the difficulty to assess the method 73 

uncertainty and the remaining spatial scale mismatch. When the statistical spatial structure of SM can be 74 

inferred, the upscaling uncertainty can be estimated with geostatistical techniques like block kriging 75 

[Wang et al., 2015]. However, they need dense sampling schemes (>100, [Webster & Oliver, 1992]) that 76 

could never be met in practice for long-term in situ networks. 77 

An alternative approach is to choose directly the ground station that behaves most like the footprint time 78 

series. Temporal stability analysis [Vachaud et al., 1985] selects the station that exhibits the smallest 79 

difference, in terms of mean and dispersion [Cosh et al., 2006, 2008; Kornelsen and Coulibaly, 2013]. It 80 

is based on the assumption that spatial SM fields are stable in time, which is not always true [Yee et al., 81 

2016]. Triple collocation (TC) can also be used to estimate the representativeness of ground stations 82 

[Miralles et al., 2010; Gruber et al., 2013; Chen et al., 2016]. It requires 3 datasets and is very sensitive 83 

to the independence between the errors and between the signals and the errors [Yilmaz and Crow, 2014]. 84 

Finally, the “inverse footprint” method [Orlowsky and Seneviratne, 2014; Nicolai-Shaw et al., 2015] 85 

simply evaluates the synchronism between surrounding stations.  86 

The spatial representativeness of SM datasets may be different depending on the time scale.  Studies at 87 

country and continental extents showed that large and small time scales have large and small 88 
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representativeness areas, respectively [Cayan and Georgakakos, 1995; Vinnikov et al., 1996; Entin et 89 

al., 2000]. Entin et al. [2000] identified two spatio-temporal scales: the small scale was of the order of 90 

some tens of meters and few days and was due to local processes such as infiltration, precipitation and 91 

drainage; the large scale was of the order of some hundreds of km and 2-3 months and was due to 92 

climatic atmospheric forcing. The works of Chaney et al.[2014] and Su & Ryu [2015] have provided 93 

similar conclusions for footprint extents. Chaney et al. [2014] showed that, in the Little River 94 

catchment, large spatial scale factors (land cover and evapotranspiration) influence SM seasonal cycles, 95 

while the small ones (soil texture) do not. Similarly, Su & Ryu [2015] have showed that the correlation  96 

between point and large-support datasets (in situ and satellite) increases with the time scale. However, at 97 

the view of the literature on triple collocation (TC), we ascertain an alternative interpretation about SM 98 

seasonal scales. TC studies have usually considered that there exist significant differences between the 99 

seasonal components or “climatologies” of ground and satellite/model datasets due to their different 100 

spatial support sizes [Gruber et al., 2016]. For this reason, TC studies have systematically detrended the 101 

SM series for the seasonal component. To our knowledge, this apparent divergence between 102 

interpretations of the seasonal SM component has not been addressed yet in the literature. 103 

The evaluation of SM representativeness on a per-time scale basis requires separating the SM series in 104 

time scales. Moving averages have been applied to separate the seasonality and trend components (large 105 

time scales) from the anomaly series component (shorter time scales)  [Gruber et al., 2013; Nicolai-106 

Shaw et al., 2015].  Although events are localized with precision in the anomaly series, these are still 107 

affected by part of the seasonal component. Fourier analysis has been used to analyze the power of each 108 

time scale [Katul et al., 2007; Su et al., 2016], but it does not allow localizing events in time. More 109 

advanced spectral techniques like the short-time Fourier transform and wavelet transforms can solve this 110 

issue. Wavelet transforms have the advantage of localizing events in time with a precision that does not 111 
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depend on the time scale [Barford et al., 1992; Cornish et al., 2006]. Some examples of wavelets 112 

applied to SM series include the study of daily to annual components at different depths [Lauzon et al., 113 

2004], the connections with other geophysical variables per time scale [Graf et al., 2014] and the 114 

correction of multiplicative and additive biases per time scale [Su and Ryu, 2015]. 115 

The objective of this study is to investigate the connection between spatial and time scales within 116 

satellite footprints. The investigation is performed in three steps: first, a preliminary assessment of the 117 

scales and their geophysical drivers is conducted on modeled SM data. Secondly, we investigate which 118 

method is suited the best for assessing spatial representativeness (spatial scale) when SM time series are 119 

decomposed in time scales. Time scales are obtained with wavelet transforms. The approaches tested for 120 

assessing the spatial representativeness are temporal stability, triple collocation and two new ones: the 121 

temporally correlated areas (CArea) method and an approach based on wavelet correlations (WCor). The 122 

third and final step consists in analyzing actual measured SM data to verify the conclusions reached at 123 

that point. To our knowledge, this is the first study of this kind to investigate the footprint extent with a 124 

comprehensive set of methods and datasets. In addition, we analyze the seasonal components of point 125 

and footprint-support series in order to solve the apparent divergence in literature mentioned before. 126 

This article is structured as follows. Section 2 presents the methods used for the analyses in the time 127 

domain (wavelets, section 2.1) and in the spatial domain (representativeness methods, section 2.2). 128 

Section 3 describes the datasets. Section 4 gathers the results from each of the three steps of the 129 

investigation in respectively three subsections.  The conclusions are summarized in section 5. 130 

2 Materials and Methods 131 

2.1 Time-Scale Decomposition of SM 132 
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Wavelets are mathematical functions that can be used to decompose time series in a set of time scales 133 

[Foufoula-Georgiou and Kumar, 1994; Percival and Walden, 2000]. Wavelet transforms are time-134 

frequency transforms: they detect the frequency components of the signal and also when events occur in 135 

time. The continuous wavelet transform (CWT) is expressed as a collection of variables { W(τ,t) : τ > 0, 136 

-∞ < t < ∞ }, where τ denotes the time scale (Eq. 1). It consists in convoluting the original signal x(t) 137 

with a set of translated and stretched/shrinked versions of the wavelet basis function 𝜓(𝑡). 138 

𝑊(𝜏, 𝑡) =  ∫ 𝑥(𝑢)𝜓 (
𝑢−𝑡

𝜏
) 𝑑𝑢

∞

−∞
                         Eq. 1 139 

The maximal overlap discrete wavelet transform (MODWT) is a sub-sampled version of the CWT at 140 

dyadic scales (Eq. 2). 141 

𝜏𝑗 =  2𝑗−1 𝑇𝑠,        𝑗 = 1, 2 … 𝐽0   Eq. 2 142 

where J0 is the last level of decomposition, Ts is the sampling period of the original signal (in time 143 

units), 𝜏𝑗 the time scale (in time units) and j the unit-less scale. The MODWT can be applied to any 144 

sample size and is shift-invariant [Percival & Walden, 2000, pp. 159, 160]. 145 

The wavelet transform produces J0 series of wavelet coefficients {𝑊𝑗(𝑡)} for the scales {𝜏𝑗} (j =146 

 1, 2 …  J0) and one series of scale coefficients 𝑉𝐽0(𝑡) that contains all variations at scales larger than 147 

𝜏𝐽0. For the sake of clarity, the scale series are usually referred as 𝑉𝐽0 instead of 𝑊(𝐽0−∞]. The inverse 148 

transform of the Wj and VJ0 coefficients produces the detail (Dj) and smooth (SJ0) series, respectively. 149 

The detail series represent anomalies at scale 𝜏𝑗 (rapid variations), i.e. differences in weighted averages 150 

of periods of length 𝜏𝑗 or slightly longer [Percival & Walden, 2000, pp. 11, 59]. They are zero mean by 151 

construction. The smooth series contain the remaining variations and the bias for time scales larger than 152 

J0 (slow variations). The sum of the detail and smooth series recovers the original time series (Eq. 3).  153 
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𝑥(𝑡) =  ∑ 𝐷𝑗 + 𝑆𝐽0
𝐽0
𝑗=1   Eq. 3 154 

One of the critical aspects of wavelet analysis is the choice of the maximum level of decomposition J0 155 

and the wavelet basis function 𝜓(𝑡). The largest time scale at J0 should be smaller than the length of the 156 

series (2𝐽0−1 < 𝑁).  In this study, we use 6-month and 2-year series with a sampling period (Ts) of half 157 

a day. Therefore, we select J0 = 8 for the 6-month series and J0 = 9 for the 2-year series. The list of 158 

possible scales is provided in Table 1.  Regarding the wavelet basis function, we will use the 159 

Daubechies-4 (D4) [Daubechies, 1992] and the Haar [Haar, 1910] wavelet. While D4 better isolates 160 

time scales due to its sharper response in the frequency domain, it is longer in time than Haar. Given that 161 

the length of the wavelet at scale J0 should be shorter than the length of the series [Cornish et al., 2006], 162 

we select Haar for the 6-month series, and D4 for the 2-year series. 163 

2.2 Spatial Representativeness Metrics 164 

In this section, we describe the methods we use to evaluate the spatial representativeness: two existing 165 

methods, temporal stability (TStab) and triple collocation (TC), and two new methods, the temporally-166 

correlated area (CArea) and the wavelet-based correlation (WCor). CArea is designed to serve as the 167 

reference when working with modeled spatial fields since it accounts for all the local supports contained 168 

within the footprint. In the case of dense in situ networks, the spatial sampling is insufficient to ensure 169 

accurate CArea results. WCor is designed to serve as an alternative method to TStab and TC that, as will 170 

be shown, require quite restrictive conditions constraining their use to limited range of time scales  171 

2.2.1 Temporal Stability (TStab) 172 

TStab was introduced by Vachaud et al. [1985] and has been thoroughly detailed in a number of 173 

publications [Martínez-Fernández and Ceballos, 2005; Cosh et al., 2006; Mittelbach and Seneviratne, 174 
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2012]. In short, TStab evaluates how the relative differences (RDi, Eq. 4) between the spatial average 175 

values SMavg and point-support values SMpt-i at the location i  vary in time. The most representative point 176 

time series is the one with both smaller mean RD (MRDi, Eq. 5) and smaller standard deviation of RD 177 

(SDRDi, Eq. 6). In this study, stations with small and big MRD also had small and big SDRD, 178 

respectively (not shown here). Thus, for the sake of concision, we bring the two metrics into one, the 179 

RMSEi (Eq. 7), following the notation of Jacobs et al., [2004]. 180 

𝑅𝐷𝑖(𝑡) =  
𝑆𝑀𝑖(𝑡)− 𝑆𝑀𝑎𝑣𝑔(𝑡)

𝑆𝑀𝑎𝑣𝑔(𝑡)
       Eq. 4 181 

𝑀𝑅𝐷𝑖 =
1

𝑁
∑ 𝑅𝐷𝑖(𝑡)𝑁

𝑡=1                                          Eq. 5 182 

𝑆𝐷𝑅𝐷𝑖 =  √
1

𝑁−1
∑ (𝑅𝐷𝑖(𝑡) − 𝑀𝑅𝐷𝑖)2𝑁

𝑡=1     Eq. 6 183 

𝑅𝑀𝑆𝐸𝑖 =  √𝑀𝑅𝐷𝑖
2 + 𝑆𝐷𝑅𝐷𝑖

2                              Eq. 7 184 

2.2.2 Triple Collocation (TC) 185 

Triple collocation (TC) is a technique for estimating the random errors of three collocated datasets that 186 

are meant to represent the same geophysical variable [Stoffelen, 1998].  It relies on a linear error model 187 

𝑥𝑘(t) =  𝛼𝑘 +  𝛽𝑘θ(t) + 𝜀𝑘(t)   Eq. 8 188 

where k denotes one of the three datasets, 𝛼𝑘 and 𝛽𝑘 are calibration constants, 𝜃(𝑡) is the (unknown) 189 

true SM and 𝜀𝑘 is the error term. In the case of SM, when TC is used to evaluate the spatial 190 

representativeness, the TC triplet is formed by the in situ dataset (which is assessed for 191 

representativeness) and two datasets of equivalent large supports. Supposing that the latter show 192 

stronger similarities because of their similar support sizes and that the systems errors are much smaller 193 

than the differences due to the spatial scale mismatch, the error metrics of the in situ dataset should 194 

mainly reflect its spatial representativeness [Vogelzang and Stoffelen, 2012; Gruber et al., 2016]. 195 
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Two TC metrics are typically used, the variance of the unknown errors 𝜎𝜀𝑘
2  [Miralles et al., 2010; 196 

Gruber et al., 2013] and the correlation between the dataset 𝜌𝑥𝑘,𝑡𝑟𝑢𝑒 and the true soil moisture [McColl 197 

et al., 2014; Chen et al., 2016]. In this study we use the TC-correlation coefficient because, unlike the 198 

error variance, it is normalized by the total signal power and so allows the direct comparison of results 199 

from different stations and networks. 200 

Assuming that the covariances between the signal 𝜃(𝑡) and the errors 𝜀𝑘(𝑡) and between the errors of 201 

different datasets are null, the error variance and the TC-correlation estimators can be derived [Chen et 202 

al., 2016] and written as 203 

𝜎𝜀𝑘
2 =  𝜎𝑘

2 − 𝜎𝑘𝑙𝜎𝑘𝑚/𝜎𝑚𝑙 Eq. 9 204 

𝜌𝑥𝑘,𝑡𝑟𝑢𝑒 =  ±√
𝜎𝑘𝑙𝜎𝑘𝑚

𝜎𝑘
2𝜎𝑚𝑙

   Eq. 10 205 

where  𝜎𝑘
2 is the variance of dataset k and 𝜎𝑘𝑙, 𝜎𝑘𝑚, 𝜎𝑚𝑙 are the cross-covariances between the two 206 

datasets specified in the subscript. The 3 following conditions are necessary to compute Eq. 10 [Chen et 207 

al., 2016]: a) non-negative cross-correlation between all datasets; b) non-negative 𝜎𝜀𝑘
2 ; c) non-negative 208 

𝜌𝑥𝑘,𝑡𝑟𝑢𝑒
2 . 209 

2.2.3 Temporally Correlated Areas (CArea) 210 

Nicolai-Shaw et al. [2015] and Orlowsky & Seneviratne [2014] introduced the notion of “inverse 211 

footprint” for in situ SM series that they define as the area surrounding a station where other stations 212 

exhibit temporal similarity (correlation) above a specified threshold. In this study, we propose a 213 

modification that we call the temporally correlated areas (CArea) method. The 3 main changes are:  214 

a) It is only applied to SM gridded data. Even in the case of dense in situ networks the spatial 215 

sampling is too sparse for detailed spatio-temporal analyses. 216 
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b) Pearson correlation replaces Spearman correlation, in order to be consistent with the other 217 

approaches used that rely on the Pearson statistic. 218 

c) The final metric is the percentage of pixels above a specific correlation threshold. The 219 

mathematical formula is presented in Eq. 11, where i0 is the location where representativeness is 220 

evaluated, M the number of locations i within the area A, 𝑅𝑥𝑖,𝑥𝑖0 
the correlation between the time 221 

series at locations i and i0, 𝑅𝑡ℎ the correlation threshold, and H the Heaviside function that is 0 222 

and 1 for negative and positive numbers, respectively. 223 

𝐶𝐴𝑟𝑒𝑎(𝑖0) =
1

𝑀
∑ 𝐻 ( 𝑅𝑥𝑖,𝑥𝑖0 

− 𝑅𝑡ℎ ) × 100 (%)∀𝑖≠𝑖0⊂𝐴   Eq. 11 224 

The CArea method consists in calculating the percentage of time series within the study area that 225 

correlate with the reference series xi0 above a specific threshold. The higher the percentage (and the 226 

correlation threshold), the more representative is a location i0.  227 

2.2.4 Wavelet-based Correlation (WCor) 228 

The wavelet-based correlation (WCor) evaluates the representativeness of a location i0 on a per time-229 

scale basis. First, the point time series and the large-support series at that location are decomposed in 230 

detail series with wavelet transforms. Then, correlation  𝑅𝑗 between the detail series at each scale j is 231 

computed: 232 

𝑅𝑗 = 𝑅{𝐷𝑗
𝑝𝑜𝑖𝑛𝑡−𝑖0, 𝐷𝑗

𝑙𝑎𝑟𝑔𝑒
},      𝑗 = 1, 2 … 𝐽0  Eq. 12 233 

The WCor values are simply a measure of linear matching. They cannot by themselves quantify 234 

separately the errors in the datasets and the spatial scale mismatch. However, the analysis of a collection 235 

of in situ and modeled SM series in the following sections will show that they serve to understand the 236 
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connection between spatial and temporal scales and to compare the relative representativeness levels of 237 

a set of stations. 238 

3 Datasets 239 

3.1 Local-support Datasets 240 

We have selected for analysis the Little Washita watershed in USA [Cosh et al., 2006] and the Yanco 241 

area of the Murrumbidgee Soil Moisture Monitoring Network in Australia [Smith et al., 2012]. They are 242 

selected because both are monitored by dense in situ networks and have contrasting climatic conditions 243 

(sub-humid and semi-arid, respectively) and SM forcing (irrigation is present in Yanco but not in Little 244 

Washita). Little Washita will be used for the analysis of point in situ and modeled series and Yanco for 245 

the analysis of time series of modeled SM gridded data. As explained in the introduction, modeled data 246 

will serve for illustrating the connections between spatial scales, time scales and geophysical variables, 247 

and actual measured data will be used for verifying the findings. 248 

The Little Washita network has an extent of ~610 km2. The average annual rainfall is 750 mm and most 249 

of it takes place in spring and autumn [Allen and Naney, 1991]. The area is mainly covered by rangeland 250 

and crops, soil texture is diverse (sands, loams and clays) and the topography is moderately rolling. The 251 

network is made up of 20 permanent Stevens Hydra Probe stations installed at a depth of 5 cm with a 252 

sensing range between 3 and 7 cm. 253 

The Yanco network has an extent of ~3000 km2. The average annual rainfall is around 400 mm with 254 

precipitations concentrated in winter and spring. The area is mainly flat and is covered by pastures and 255 

both dry and irrigated crops. The network is made up of 13 permanent Stevens Hydra Probe stations 256 

providing SM integrated over the top 5 cm of soil. 257 
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3.1.1 Modeled Series (Little Washita) 258 

The model in Pan et al. [2003] was specifically designed for the Little Washita network. Simplicity is its 259 

major asset and the output SM time series are adequately realistic for our purposes. Three components 260 

with distinctive temporal scales control the SM series dynamics: precipitation (short-term), texture 261 

(short-to-medium term) and vegetation (seasonal term). These time scales could be represented by other 262 

factors in other areas of study or in more complex models. For this reason, we consider that precipitation 263 

includes irrigation, texture represents any soil memory process and vegetation represents any seasonal 264 

signal, like temperature trends. 265 

The model is summarized by the following equation:  266 

𝑆𝑀(t) = min {max  {𝑆𝑀(t − 1) ∙ 𝑒
−𝜂(𝑡)∙Ts

𝑍
 + 

𝛾∙𝑝(t)

𝜂(t)∙Ts
∙ [1 − 𝑒

−𝜂(t)∙Ts
𝑍 ] , 𝑆𝑀𝑚𝑖𝑛} , 𝑆𝑀𝑚𝑎𝑥}   Eq. 13 267 

where Ts is the sampling period in hours (h), 𝑝(𝑡) is the cumulative precipitation (m) between 𝑡 − 1 and 268 

𝑡 , 𝛾 is the interception by vegetation, 𝜂 the loss coefficient (m/h) and Z is the penetration depth (m). The 269 

loss coefficient is calculated as a function of the drainage coefficient Ks and the leaf-area index (LAI). 270 

The parameters used in this study are described in  271 

Table 2. 272 

Two-year SM series are produced with this model at a 12 h sampling interval. Two sets of series (a, b) 273 

are generated by varying the LAI amplitude. Each set is formed by a reference series (ref-a / ref-b) and 274 

four sample series (1-, 2-, 3-, 4-a/b). The reference series are produced for a loam texture using the in 275 

situ measured precipitation and the MODIS LAI time series observed at station #1. The ref-a time series 276 

is shown in Figure 1-a, together with the true in situ series at station #1. Sample series are generated 277 

identically to their respective reference series except for one variable (  278 
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Table 3): For sample series 1-a/b, we introduced random variations in precipitation amplitudes. For 279 

sample series 2-a/b, we changed also the synchronization of some precipitation events (10 % of the 280 

events are randomly selected and shifted in time by +0.5 day and another 10 % by -0.5 day). For series 281 

3-a/b, we changed the texture to sand. Finally, for series 4-a/b, we introduced a 30 day time shift in the 282 

seasonal component. The detailed setup is provided in   283 
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Table 3, where the variable changes are highlighted in italics. 284 

3.1.2 In Situ Series (Little Washita) 285 

The 20 in situ series of Little Washita for the 2012/07 - 2014/07 2-year period are selected. The data was 286 

provided by the team of the U.S. Department of Agriculture (USDA) in charge of maintaining the 287 

network.  Data access and contact details can be found in the USDA Agricultural Research Service 288 

website (http://ars.mesonet.org/). The spatial average of all the station series and the time series 289 

measured at station #1 are shown for illustration in Figure 1-a. Since wavelet transforms need regularly 290 

sampled time series, big gaps (> 1 month) are filled by linear regression with the most similar station 291 

series. The percentage of filled gaps with this method is ~5.7 % of the entire series. The remaining gaps, 292 

which represent ~1.1 % of the samples, are filled with a discrete cosine transform (DCT) approach 293 

[Wang et al., 2012]. The advantage of DCT is that it uses the full series –and not just local information- 294 

to estimate the missing data based on the signal spectrum. 295 

3.1.3 In-situ-DISPATCH Gridded Data (Yanco) 296 

In this study, SM maps at 1 km resolution are generated by disaggregating the spatial average of the SM 297 

in situ Yanco time series. Yanco in situ data is available from the OzNet hydrological monitoring 298 

network website (http://www.oznet.org.au/). The disaggregation method used is derived from the 299 

operational version of the Disaggregation based on Physical And Theoretical scale Change 300 

(DISPATCH) algorithm [Merlin et al., 2012, 2013; Molero et al., 2016]. Former validation studies of 301 

DISPATCH over the Yanco region gave satisfactory results [Merlin et al., 2012; Malbéteau et al., 302 

2016]. The algorithm was originally designed to improve the resolution of satellite SM datasets by using 303 

temperature and vegetation data from optical/thermal sensors like MODIS. Note that in this study, we 304 

replace the satellite SM by the Yanco in situ average series, so that the SM maps are as close as possible 305 

http://www.oznet.org.au/
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to the ground reality. DISPATCH preserves the spatial average by construction. The dataset will be 306 

called in situ-DISPATCH (in situ-DIS).  307 

The Yanco in situ-DIS series are sampled at SMOS overpass times (approximately 6 a.m. and 6 p.m.). 308 

Long periods of clouds reduced dramatically the availability of DISPATCH data during the Austral 309 

winter; as an example, most of the in situ-DIS series at the stations locations presented long periods of 310 

unavailability (1-2 months) and data gaps represented 50 % of the series in average. As a consequence, 311 

we only consider the 6 months from 2014/09 to 2015/03, which contain both shorter periods (below 9 312 

days) and lower percentages of unavailability (~23 %). Data gaps are filled with the DCT approach 313 

[Wang et al., 2012].  314 

3.2 Large-support Datasets 315 

3.2.1 SMOS 316 

The SMOS mission [Kerr et al., 2001] is led by the European Space Agency (ESA) with collaboration 317 

of the Centre National d'Etudes Spatiales (CNES) and the Centro Para el Desarrollo Tecnológico 318 

Industrial (CDTI). The SMOS sensor is a passive 2D microwave interferometer observing the Earth at 319 

L-band (1.4 GHz) dedicated for the observation of SM and ocean salinity. The mission provides SM 320 

estimates in m3/m3 over the top ~5 cm surface layer. The footprint (support) has a resolution that varies 321 

from 27 to 55 km depending on the observation geometry, with an average resolution of 43 km. The 322 

maximum revisit time of SMOS is 3 days with crossing nodes at 6 a.m. and 6 p.m. local solar time for 323 

ascending and descending orbits, respectively. 324 

The SMOS data used in this study is obtained from the ESA Level-2 (L2) SM products (version 620). 325 

The SM retrieval algorithm takes into account the landscape heterogeneity of the observed surface. 326 

When the dominant land-cover is low-vegetated soil (like in this study), the brightness temperatures of 327 
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the low-vegetated part are modeled with the L-band Microwave Emission of the Biosphere (L-MEB) 328 

forward model [Wigneron et al., 2007]. Details of the L2 SM retrieval algorithms can be found in Kerr 329 

et al. [2012, 2014]. 330 

The L2 grid nodes that are in the center of each in situ network are selected: the node 226157 for Little 331 

Washita and the node 8174767 for Yanco. These are depicted in Figure 2, together with the position of 332 

the ground stations of each network. Ascending and descending orbits are merged in one single time 333 

series with a 0.5-day sampling period. The original SMOS time series for the Little Washita network is 334 

shown in Figure 1-b. SM retrievals with probability of radio-frequency interference (RFI) higher than 335 

10 % and data quality index (DQX) higher than 20 % are removed. The gaps represent 59 % of the Little 336 

Washita and Yanco SMOS series and are evenly distributed: the mean number of consecutive gaps is 2.8 337 

and the mean number of consecutive samples (without gaps) is 2.2. They are filled with the DCT 338 

method. 339 

3.2.2 AMSR2 340 

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a passive multi-band scanning 341 

radiometer onboard the Global Change Observation Mission Water 1 (GCOM-W1) satellite, launched 342 

by the Japan Aerospace Exploration Agency (JAXA) in May 2012. Its revisit time is 1-2 days with 343 

crossing nodes at 1:30 p.m. and 1:30 a.m. local solar time for ascending and descending orbits, 344 

respectively. Since SM derived from lower frequencies is expected to be more accurate, the lowest 345 

AMSR2 band (6.9 GHz, C-band) is selected here. At this frequency, the footprint is ~35 x 61 km (along 346 

scan x along track) [JAXA, 2013] and the derived SM products represent the soil moisture of the top ~1– 347 

2 cm surface layer. 348 
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Several AMSR2 SM products exist. We use the Land Parameter Retrieval Model (LPRM) products 349 

[Owe et al., 2008]. LPRM considers the surface as homogeneous within the footprint in terms of 350 

vegetation scattering albedo, surface roughness, etc.. The product distributed by the NASA Goddard 351 

Earth Sciences Data and Information Services Center showed unusual temporal patterns and positive 352 

biases [Cho et al., 2017], so we use an AMSR2-LPRM SM dataset directly provided by Dr. Parinussa. 353 

We only LPRM products from descending overpasses (1:30 a.m.). They have been proved as more 354 

accurate [Draper et al., 2009; Lei et al., 2015] than their ascending counterparts, probably due  to the 355 

more  uniform  surface  temperature  and  soil  moisture vertical profiles. For each network in this study, 356 

the AMSR2 pixel closer to the selected SMOS node is chosen (Figure 2). The AMSR2 time series for 357 

the Little Washita network is shown in Figure 1-b. SM estimates are discarded when either they are 358 

equal to zero or when the quality mask values are higher than 68. On average, gaps represent 70 % of 359 

the AMSR2 series and are uniformly distributed along the Little Washita and Yanco series: the mean 360 

number of consecutive gaps is 3.8 and 1.9, respectively, and the mean number of consecutive samples is 361 

1. Data gaps are filled with the DCT method.  362 

3.2.3 ECMWF 363 

We use the ECMWF SM dataset used by the SMOS L2 processor as initial guess in the retrieval loop. 364 

This custom ECMWF dataset is obtained from the top 0-7 cm soil layer of the ECMWF forecast system 365 

and has been interpolated in space and time to match the SMOS L2 grid and overpass times. The custom 366 

ECWMF product is extracted from the SM_Init_Val field of the Level 2 Soil Moisture Data Analysis 367 

Product (MIR_SMDAP2), which is available through the ESA SMOS dissemination web service 368 

(https://smos-ds-02.eo.esa.int/oads/access/). More information on the ECMWF auxiliary product can be 369 

found in Kerr et al. [2012, 2014, 2016]. The ECMWF time series for the Little Washita network in 370 

https://smos-ds-02.eo.esa.int/oads/access/
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shown in Figure 1-b. On average, gaps represent 48 % of the series and are uniformly distributed: the 371 

mean number of consecutive gaps is 2.5 and the mean number of consecutive samples (without gaps) is 372 

2.7. Gaps are filled with the DCT method.  373 

4 Results and Discussion 374 

4.1 Connection between Spatial and Time Scales 375 

This section presents the first step of our investigation and seeks to reveal the existing connections 376 

between spatial scales, time scales and geophysical drivers in SM modeled datasets.  We analyze how 377 

SM time scales are influenced by differences in the sources of SM variability (forcing events, soil 378 

memory and seasonal sources), for which the Little Washita modeled series were specifically designed. 379 

To this end, we evaluate the correlation between each sample series and its respective reference series (a 380 

or b, Table 3) on a per-time scale basis. 381 

The correlation of each sample-reference series pair is depicted in Figure 3 with differently colored 382 

lines. Solid lines correspond to pairs of the a group and dashed lines to the b group. Differences in 383 

forcing events (blue and red lines) deteriorate the correlation, at least in the first time scales ( 2 days). 384 

Moreover, de-synchronizations produce irregular correlation patterns (red lines). Regarding texture 385 

heterogeneity (magenta lines), it deteriorates the correlations of middle scales up to the first seasonal 386 

scale (32 to 64-day scales). This illustrates that both meteorological forcing and surface memory can 387 

contribute to the month and seasonal scale signatures. Finally, when the seasonal component is not 388 

synchronized, the correlation at month and seasonal scales is hampered. This happens only when the 389 

seasonal component represents an important part of signal (case 4-a), otherwise, the correlation is 390 

maintained (case 4-b).We have just shown the connections between some of the sources of SM 391 

variability and SM time scales, from a model perspective. Do these sources also exhibit characteristic 392 
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spatial scales? For an exhaustive spatial investigation, the area under study requires to be fully sampled, 393 

so in the next experiment we use the time series of in situ-DIS spatialized data. We evaluate the spatial 394 

representativeness of the pixels containing an in situ station on a per time-scale basis, by applying 395 

CArea to their wavelet decomposed series. We also evaluate the representativeness of two other series 396 

that are expected to represent the satellite footprint better than the point in situ series: the field average 397 

series (FAvg, the average of all the pixels) and the network average series (NAvg, the average of the 398 

pixels containing a station).  399 

The results are presented in Figure 4, where each line represents the CArea values obtained for a specific 400 

pixel for a range of correlation thresholds. Regardless the FAvg and the NAvg series that have their own 401 

names, the ID of each pixel corresponds to the number of the in situ station contained within. We 402 

observe that the lines move to the right and are more distant from each other as the time scale increases. 403 

This implies that, in general, spatial representativeness increases with the time scale, but the evolution is 404 

not the same for all locations. The latter could be explained by the combination between the propagation 405 

of small scale effects and the appearance of larger scale SM factors (the propagation of small scale 406 

effects was shown in the modeled Little Washita series). We also notice that the field and the network 407 

average series are the most representative ones at all time scales. 408 

Small time scales (0.5-2 days) exhibit the smallest correlated area, with less than 25 % of the area 409 

correlated above 0.5 (Figure 4). This can be due to three possible reasons: i) gap-filling, ii) noise from 410 

the disaggregation method and inputs, iii) important spatial heterogeneity. In order to assess the impact 411 

of gap-filling, we used measured in situ series, where we could set the same gaps as those in the in situ-412 

DIS series and compare scores before and after filling the gaps. Since the number of spatial samples was 413 

not large enough for applying CArea (13 stations), we simply computed the wavelet correlation scores. 414 

We found that, at the 0.5-2 day scales, correlation decreased by 0.08 on average. This means that gap-415 
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filling does not change significantly the first 3 time scales as shown in Figure 4, with respect to the other 416 

time scales.  Concerning the disaggregation noise we expect it to be negligible with respect to the 417 

geophysical heterogeneity because the analysis of actual in situ series, as it will be shown in section 4.3, 418 

exhibited similar decorrelation levels. Hence, we may conclude that the spatial heterogeneity is the main 419 

cause of low correlation at sub-weekly time scales. In this case, the heterogeneity is most likely 420 

controlled by irrigation: the Yanco area contains both irrigated and non-irrigated plots and we showed 421 

before that precipitation (and by extension, irrigation) produced de-correlation at short-time scales.  422 

Regarding weekly scales (8-16 days), most of the series have more than 50 % of the surface correlated 423 

above 0.5 and 0.6 correlation points, respectively. This suggests that there is little soil heterogeneity, 424 

according to our analysis of Figure 3 where texture was associated to middle scales. The month scale (32 425 

days) breaks the tendency of increasing representativeness with time scale. As we deducted from Figure 426 

3, such drops in correlation appear at similar time scales when precipitation events are not synchronized, 427 

a phenomenon that should be present in Yanco because of irrigation. Taking also that into account the 428 

32-days scale has small temporal variance, similar to that of the 2-days scale for this dataset (not shown 429 

here), the signal-to-noise ratio might be quite low and induce low correlation (as demonstrated by 430 

[Berger and Sweney, 1965; Goodwin and Leech, 2006]). 431 

The largest scales (16-64 days) deserve special attention. Firstly, we recall that the relative positions 432 

between the lines change in Figure 4. This justifies the separate evaluation of spatial representativeness 433 

per time scale. For example, location #1 is a good option if we are interested in seasonal changes (64-434 

days scale) but it is not for week-scale applications (8- and 16-days scales). Secondly and most 435 

importantly, the seasonal 64-days scale is the scale that exhibits the largest areas with correlation very 436 

close to 1: the most representative series exhibits ~40 % of the area with a correlation above 0.9 (Figure 437 
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4).  However, there are some locations that have extremely small representativeness areas (#13) while 438 

others have extremely large ones (#9, #10).   439 

In order to investigate deeper, Figure 5 presents the correlation maps derived for the FAvg series, prior 440 

to the calculation of the CArea percentages for this series. It shows the same overall trend of increasing 441 

representativeness with time scale, including the correlation drop at the 32-day scale explained before. It 442 

also corroborates that at the 64-day scale, locations can be either highly representative of footprint SM 443 

(correlation close to 1, in yellow), or not at all (correlation < 0.5, in dark blue). Additional experiments 444 

(not included here), showed that concurrent heterogeneities in precipitation synchronization and texture 445 

affected seasonal time scales, which can explain the observed dispersion in representativeness. From 446 

this, we conclude that the seasonal component of SM is made up of standalone seasonal elements 447 

(vegetation growing cycle, temperature trends, etc.) along with the integration over time of smaller time 448 

scale components, like short-time precipitation events and surface memory. 449 

The results presented in this section solve the apparent opposition between the detrending in TC studies 450 

and the conclusions in Su and Ryu [2015]  about seasonal scales that was mentioned in the introduction. 451 

Both Figure 4 and Figure 5 reveal that, at seasonal time scales, both situations coexist: some locations 452 

exhibit important differences with respect to the footprint time series, as suggested in TC studies, but 453 

also a large number of locations exhibit good synchronization, as proposed by Su & Ryu [2015]. Finally, 454 

we have also shown that time and spatial scales are connected in the model-based Little Washita and 455 

Yanco datasets. We hope to find similar behavior in actual in situ series (section 4.3), given that both 456 

model datasets are dependent on measured in situ data. 457 

4.2 Inter-comparison of Methods for Spatial Representativeness Assessment 458 
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Herein, we describe the second step of our investigation, which is dedicated to finding the best methods 459 

for assessing spatial representativeness of SM datasets, especially when SM time series are decomposed 460 

in time scales. To this end, we compare the performances of  TStab, TC, CArea and WCor methods 461 

when applied to the Yanco in situ-DIS dataset for the 09/2014 - 03/2015 6-month period. Because of the 462 

CArea method, the area of study includes all the stations plus a 0.05° extension to avoid borders effects 463 

in peripheral stations. The TC triplets are made up of one local-support dataset (one pixel in situ-DIS 464 

series) and two large-support datasets (the SMOS dataset and either the AMSR2 or the ECMWF 465 

dataset). 466 

4.2.1 Original Series 467 

Figure 6-a shows the spatial representativeness values obtained with each method on each selected 468 

location (pixel). The vertical axis is oriented from small to large representativeness, from bottom to top. 469 

Results are grouped per method: at the left, the CArea percentages; in the middle, the TC correlation 470 

𝜌𝑝𝑖𝑥𝑒𝑙,𝑡𝑟𝑢𝑒 values; and at the right, the TStab RMSE values (in reverse vertical-axis order). Some 471 

locations (markers) are missing from the TC groups because the preliminary test on the error variances 472 

(section 2.2.2) gave a negative value. This can be due to temporal biases, which can cause an imbalance 473 

between the dataset variance and the product of covariances (Eq. 9). TStab exhibits the largest 474 

disagreements with respect to the other methods. In agricultural sites, human decisions (cropping, 475 

irrigation) undermine TStab performances because they affect the temporal stability of the spatial 476 

distribution of SM [Yee et al., 2016]. 477 

In Figure 6-a, the ranking of the locations in terms of representativeness is not the same for CArea and 478 

TC methods. Moreover, the values of the two TC variants are not coincident in general, although they 479 

both assign the largest values to the network average and pixels 9 and 12.  All these differences could be 480 
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induced by seasonal biases. Typically, TC studies removed the 30-days average component in order to 481 

have more chances to fulfill TC requirements (e.g. [Miralles et al., 2010; Chen et al., 2016]). In our 482 

case, we take advantage of the wavelet decomposition technique to provide a detrended triplet where 483 

variations larger than 32 days are removed. Figure 6-b shows the representativeness scores of the 484 

detrended series. The ordering of the locations is more similar for the two TC variants than in Figure 6-485 

a. The wavelet-based detrending is beneficial because AMSR2 was positively biased during the first half 486 

of the period (not shown here). This can be due to C-band being more sensitive to vegetation and 487 

atmospheric factors than L-band. However, detrending does not prevent the TC and the CArea methods 488 

to provide very different results (Figure 6-b). They both agree in attributing more spatial 489 

representativeness to the network average and locations #9, #5, #4, #10, #8, while smaller spatial 490 

representativeness to locations #1, #2, #6, #7, but still some locations like #12, #13 and #3 exhibit large 491 

discrepancies. This reveals that detrending improves TC performance but it does not succeed by itself to 492 

ensure that TC conditions are perfectly fulfilled. 493 

4.2.2 Time-scale Decomposed Series 494 

The methods presented show significant differences in performance depending on whether some time 495 

scales, especially the seasonal one, are removed or not. Herein, we study the phenomenon in more detail 496 

at all time scales. The decomposition in time scales allows using the WCor approach, which compares 497 

the series of the selected pixels with the series of their spatial average (NAvg), on a per-time scale basis 498 

In Figure 7, each plot contains the representativeness scores obtained with the different methods, 499 

including WCor, at a different time scale. There is a large absence of TC scores at the half-day, 1-day, 500 

32- and 64-day scales. This is either because they are off vertical axis limits, or because they fail the TC 501 

preliminary tests (e.g. most of the times the correlations between the datasets were too low, below 0.5, 502 

not shown here). 503 
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In Figure 7, the relative ranking of TC values differ to a great extent from that of the WCor and CArea 504 

values. Considering only the ECMWF-based configuration of the TC scores, the highest concordance 505 

between TC and WCor rankings occurs at the 8-days scale.  The mismatch at larger scales (≥ 16 days) 506 

can be explained because the number of independent samples is drastically reduced due to wavelet 507 

filtering.  The length of the series (366 samples) is already lower than TC recommendations: around 500 508 

samples are needed for error variances 𝜎𝜀𝑘
2  estimated with low uncertainty (11 %) [Zwieback et al., 509 

2012]. The mismatch at small scales (2 days) is probably due to the very low correlation between the 510 

datasets, which hampers the validity of the linear model assumption.  All this suggests that TC should be 511 

applied neither to too short series nor to the shortest time scales. 512 

Finally, the WCor and CArea methods give consistent results: the ranking of the locations is similar for 513 

all time scales. This is significant since the fact that a location correlates well/badly with the rest of 514 

locations (CArea) does not imply that it correlates well/badly with the network average (WCor), and 515 

vice-versa: the correlation between the average and a point series cannot be simply summarized as the 516 

average of point-to-point correlation values. From this we conclude that WCor is a robust method for the 517 

evaluation of spatial representativeness on a per-time scale basis. 518 

4.3 Spatial Representativeness Assessment of In Situ Series 519 

This last section of results investigates whether the conclusions reached on modeled SM data apply to 520 

true in situ series, concretely those of the Little Washita network. The CArea method will no longer be 521 

applied since the spatial sampling is not sufficiently dense. The WCor method will be also tested on 522 

other large-support datasets different from the in situ average (SMOS, AMSR2 and ECMWF). It will 523 

allow exploring whether WCor could be applied to sparse networks (a single in situ station per 524 

footprint). The 2012/07 - 2014/07 2-year period is selected.  525 
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The results of the WCor and TC methods are presented in Figure 8. In contrast to the in situ-DIS Yanco 526 

case (section 4.2), much more TC scores are present, which is due to the larger number of samples. 527 

Figure 8 confirms the connection between time and spatial scales described in section 4.1: spatial 528 

representativeness increases with the time scale and the largest time scales (64 and 128 days) present the 529 

largest scatter in representativeness values. However, a drop in representativeness scores appears at the 530 

64-day scale and concerns all the method configurations except the WCor-in situ avg. The most likely 531 

explanation is that the Little Washita network covers only half of the surface of the satellite footprints. 532 

As a consequence, the in situ series should present similar differences with respect to the satellite 533 

products in terms of precipitation and surface memory and, as explained in section 4.1, these elements 534 

can cause decorrelation in the 32- and 64-day scales. 535 

Is the gap-filling the root cause of the low representativeness scores at sub-weekly scales? According to 536 

the previous section, the gap-filling in the point and average in situ series has a marginal effect. In 537 

addition, in this section we evaluated its effect on the large scale datasets. The procedure consisted in 538 

setting the  large-scale datasets gaps in the in situ series and computing the scores again. In the case of 539 

WCor, we observed that, at scales smaller than 4 days, the experiment induced a small reduction in 540 

variance and an increase in correlation of between 0.05 and 0.2. According to these results, the gap-541 

filling does not change the relative scores presented in Figure 8 and in this study in general: the scores at 542 

scales smaller than 4 days remain much lower than those of larger time scales, even after taking into 543 

account the correlation increase due to gap-filling. 544 

When TC and WCor approaches are compared, similarities are found by groups (Figure 8): ECMWF-545 

based TC results match well with the WCor results when the large-support dataset is either the in situ 546 

average, SMOS or ECMWF (1st group), while AMSR2-TC values match well with the WCor-AMSR2 547 

values (2nd group). This highlights that both TC and WCor methods have a high sensibility to the choice 548 
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of the large support dataset. Two main features can explain the differences between the first and the 549 

second group. First, the gaps and the sensing time of AMSR2 series are different to those of the second 550 

group. Secondly, the interpolation of the custom ECMWF dataset and its use as first guess in the SMOS 551 

retrieval system could foster similarity with SMOS-based scores. However, at the view of recent 552 

analyses of both products [Kerr et al., 2016], the SMOS retrievals are independent of ECMWF values. 553 

The TC-WCor consistency is lost at the 64-days scale for the first group and at the 32-days scale for the 554 

second group. This is probably caused by a poorer performance of the TC method due to the reduction 555 

in the number of independent samples along with a correlation decrease between the datasets at those 556 

particular scales. This can be seen in Figure 9, where the correlation between the datasets is shown. We 557 

also observe that the higher correlation values for the first group at the 128-days scale (Figure 9-a) 558 

seems related to the good consistency between WCor and TC results at this scale in Figure 8. For 559 

example, both methods designate stations #3, #11, #14, #15, #17, #19 as the most representative and 560 

stations #2, #4, #5, #8, #16 and #20 as the least representative ones. 561 

SMOS and ECMWF WCor results are the most similar to the in situ-avg WCor scores (Figure 8), so we 562 

consider necessary to examine them in more detail. First, SMOS- and ECMWF-based correlations are 563 

very low (< 0.5) at the first 3 scales (0.5-2 days) while the in situ-avg correlations are higher than 0.6. In 564 

the case of satellite datasets, this could be due to high-frequency noise, but not in the case of models like 565 

ECMWF that are governed by a smoother model structure. Another more likely explanation is related to 566 

the spatial support: the spacing between the in situ stations is larger than the correlation length of SM, 567 

which ranges between some meters to some hundreds of meters [Western et al., 1998, 2004; De Lannoy 568 

et al., 2006]. As a consequence, the in situ average is computed with an undersampled surface, which 569 

misses small spatial scale phenomena, while satellite sensors observe a continuous sampled surface. 570 

Moreover, satellite sensors estimate SM from the energy integrated over the footprint, which is not 571 
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necessarily equal to the integral of SM due to non-linearities in the models and in the scaling of 572 

parameters [Crow et al., 2001; Crosson et al., 2010]. From this we conclude that the smallest time scales 573 

( 2 days) are not good choices to validate satellite estimates given the large geophysical mismatch 574 

between satellite and in situ measurements. 575 

Regarding the middle scales (4-16 days), the ranking of ECMWF-WCor is more similar to the in situ-576 

avg ranking than the SMOS one (Figure 8), which we attribute to SMOS observational noise. However, 577 

at last scales (32-128 days) we observe the opposite. Therefore, we consider SMOS as a good large-578 

support dataset to be used for spatial representativeness assessment in the Little Washita region, 579 

especially at the month and seasonal scales. 580 

5 Conclusions 581 

Satellite surface SM products are often validated with ground samples by direct comparison, despite the 582 

different spatial supports of the two datasets (~50 km and a few centimeters, respectively). Ground 583 

samples can represent areas larger than their measurement support. The representativeness area may 584 

vary with the time scale [Entin et al., 2000]. This study sought to investigate the connections between 585 

SM spatial and time scales within typical coarse scale satellite footprint-size areas. For this purpose, we 586 

evaluated the spatial representativeness of different locations at a range of time scales with various 587 

methods: triple collocation (TC), temporal stability analysis (TStab), the percentage of correlated area 588 

(CArea) and a new proposed approach consisting in wavelet-based correlations (WCor).  589 

The comparison of the four approaches revealed that TStab, although applicable to SM absolute values, 590 

could not be applied to wavelet decomposed series because of their multiple zero-crossings. TC could 591 

not give any results or gave results that were not consistent with the other methods under two situations: 592 

at short time scales (0.5-2 days), because the correlation between the datasets was too low, and at larger 593 
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time scales (larger than 8 days in the case of 6-month series and larger than 32 days in the case of 2-year 594 

series), because the number of independent samples was too low after wavelet filtering. CArea and 595 

WCor results were consistent in general. WCor is less sensitive to the spatial sampling density than 596 

CArea, so it is a robust method for in situ networks that moreover requires less restrictive conditions 597 

than the 3 other approaches presented. 598 

By applying TC, CArea and WCor to modeled and true in situ time series in the Little Washita 599 

watershed and to spatialized SM data in the Yanco area, we found that SM spatial and time scales were 600 

connected. The series were sampled every 0.5 days. Precipitation and irrigation were found responsible 601 

of small representativeness areas at small time scales (0.5-2 days). As the time scale increased from 0.5 602 

days to 128 days, the spatial representativeness scores tended to increase as well; however, they became 603 

more scattered. This was explained by different geophysical factors. First, de-synchronizations in 604 

precipitation were propagated to larger time scales preventing representativeness to regularly increase at 605 

some locations. Secondly, we observed that the seasonal scale did not only include seasonal signals 606 

(vegetation growth, temperature trends, etc.) but also the temporal integration of precipitation and soil 607 

memory responses from short and medium time scales.  608 

This is, to our knowledge, the first comprehensive investigation on the connection between SM spatial 609 

and time scales within the satellite footprint (~50 km). It has revealed that time decompositions along 610 

with the WCor method are promising tools for improving satellite validation and modeling of surface 611 

soil moisture. At small time scales (below 4 days), the spatial scale mismatch between satellite/model 612 

series (SMOS, AMSR2, ECMWF) and in situ series was found extremely large and similar for all 613 

stations. Therefore, we suggest not taking into account these time scales in the validation of satellite 614 

products. At the seasonal scale, some locations were observed very similar to the footprint-support 615 

series, while some others were very different. This explained why in some previous studies seasonal 616 
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scales were found similar for both in situ and satellite series (e.g. [Su and Ryu, 2015]) while in TC 617 

studies they were supposed intrinsically different so seasonal detrending was applied (e.g. [Gruber et al., 618 

2016]). Finally, the findings of this study can contribute to other SM applications like downscaling or 619 

modeling: multi-scale algorithms can be built based on the specific interactions at each time and spatial 620 

scale. Given its time-scale dependence, spatial variability should be addressed differently depending on 621 

the time scale. 622 
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Tables 855 

Table 1 – Wavelet scales for sampling period Ts = 0.5 days 856 

Time 

scale 

Time scale 

(days) 

j τj = 2j-1·Ts 

1 0.5 

2 1 

3 2 

4 4 

5 8 

6 16 

7 32 

8 64 

9 128 
 857 

Table 2 - Values assigned to the Pan's model parameters for the generation on synthetic SM time series 858 

Parameter Value Differences with Pan et al. [2003] 

γ 0.40  

 
Adjusted to control the effect of p (γ = 1 produced 

SM > 1 m3/m3) 

SMmin (m3/m3) 0.025  

SMmax (m3/m3) 0.5  

η  (m/yr) η(t) = max{0.2 ∙ Ks + 0.4 ∙ LAI(t), 0.5}  Equation changed to match observations 

Z (m) Z = Zmax  − rmod ∙ (Ks − Ksmin) 

with  rmod =
Zmax−Zmin

Ksmax−Ksmin
=

0.09−0.025

5−0.05
 

Equation changed to match observations. A texture-

depending Z allows a wider range of decay rates. Z is 

reduced as soil becomes sandier (smaller depth 

provokes faster changes) 

Ks (cm/hr) Sand: Ks = 5,  

Loam: Ks = 1.3 

Source: FAO 

htp://ftp.fao.org/fi/cdrom/fao_training/FAO_ 

Training/General/x6706e/x6706e09.htm 
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Table 3 - Characteristics of the modeled SM series of Little Washita 861 

Series Variables 

Precipitation Texture LAI 

ref-a/b pref(t) loam LAIref−a 

LAIref−b = LAIref−a/4 

1-a/b Different amplitudes 

𝑝(𝑡) = 𝑝𝑟𝑒𝑓(𝑡) + 𝑁(0, 𝜎𝑝𝑟𝑒𝑓
/4) 

loam LAIref−a/b 

2-a/b Different amplitudes and times: 10% of the events 

shifted +0.5 day and 10 %, -0.5 day 

𝑝(𝑡) = 𝑝𝑟𝑒𝑓−𝑆𝐻𝐼𝐹𝑇(𝑡) + 𝑁(0, 𝜎𝑝𝑟𝑒𝑓
/4) 

loam LAIref−a/b 

3-a/b pref(t) sand LAIref−a/b 

4-a/b pref(t) loam One-month shift 

𝐿𝐴𝐼𝑎/𝑏(𝑡) = 𝐿𝐴𝐼𝑟𝑒𝑓−𝑎/𝑏(𝑡 − 30) 

 862 

 863 
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Figures 865 

 866 

Figure 1 – Time series of the SM datasets used in the Little Washita region, before gap-filling. Only one of the 867 
time series of the modeled dataset (ref-a) and two of the in situ dataset (station #1 and the spatial average) are 868 

included. 869 

 870 

 871 

Figure 2 – Location of the in situ stations and the SMOS and AMSR2 grid nodes in each of the validation areas. 872 
The circles represent two typical SMOS antenna footprints sizes considered in the retrieval algorithms: the 873 

average one of 43 km and the maximum one of 55 km. 874 

 875 
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 876 

Figure 3 - Correlations between the detail series of different sample series and their respective reference series (a 877 
or b), as a function of time scales. 878 

 879 
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 880 

Figure 4 – CArea scores: size of the representativeness area in percentage of the total area, for a set of different 881 
locations (pixels) and the field and network average series (FAvg, NAvg). The dataset is the in situ-DIS Yanco 882 

dataset, for the 2014/09 - 2015/03 6-month period. 883 

 884 
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 885 

Figure 5 - Maps of temporal correlation between each pixel time series and the field-average time series of the in 886 
situ-DIS dataset. Values are calculated on detail series. Color code is bounded between 0 and 1, although negative 887 

correlation values exist. 888 

  889 
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 890 

 891 

Figure 6 - Representativeness values (vertical axis) from different methods (horizontal axis) for different pixels of 892 
the in situ-DIS Yanco dataset. The methods are applied to a) full series and to b) detrended series (components > 893 

32 days are removed). The CArea correlation threshold is 0.55. 894 

 895 

 896 

Figure 7 – Spatial representativeness values from CArea, TC and WCor methods for different pixels of the in situ-897 
DIS Yanco dataset, per time scale. The CArea correlation threshold is 0.55. 898 
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 899 

 900 

Figure 8 – Spatial representativeness of Little Washita stations per time scale, evaluated with different TC and 901 
WCor methods for the 2012/07 - 2014/07 2-year period   902 
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 903 

 904 

Figure 9 - Correlation between decomposed series (detail series) of the Little-Washita datasets: (a) the 905 

TC ECMWF-based triplet and (b) the TC AMSR2-based triplet. For clarity, only the in situ average 906 

series is present as in situ dataset. 907 


